Relay t programmable logic Controllers

1) $R L C$
2) PLC

ORLE

- prior to the widespread use of PLC, in process control and automation, hardwired relay control systems were used.
- Control of motors such as starting, stopping, reversing thdirection, sequence starting. etc can be achieved by designing suitable control circuits using relays, contactors. push buttons, eft

Relay :- It is an electromagnet switch that hair a coil and a set of associate contacts.
\rightarrow contact o can be either normally open or normally closed. "Auxiliary contacts"

Contactor :- It is an electromagnet switch that has a coil and 3 main contacts with a tow auxiliary contacts.

Line Diagram

Examples
r) start/stop DC motor
2) Relay controlling
 two pilot lights

3) $A N D$ logic $y=A B$
4) $O R$ logic $y=A+B$

5) $X O R \quad y=A B^{\prime}+A^{\prime} B$
5)

$$
y=\underbrace{A B^{\prime}+A_{A P D}^{A B}}_{O R}
$$

6) Stert/stop of 3-क Moter
\downarrow

Contcel Cercuit

7) Reversing the direction of 3ϕ motor

(2) $P L C$

- It is a special form of microprocessor-based controller that uses memory to store instructions.

Advantages (Compared to RLC)
r) Can easily implemented changer "implemented in software"
2) More reliable

1) More compact
2) car operate faster
3) require less maintenance

Block Diagram

PICs:-

* Mitsubishi
x Siemens
* Toshiba
* Allen. Bradley
* Schneider
programming Languages
- Ladder diagrams (LAP)
- Instruction lists (IL)
- Function block diagram (FAD)
- structured teat (ST)
- Sequential function chart. (SFC)

I/0 Addresses

- The PLC has to be able to identity each input and output, Il does this by allocating addresses, to each input output.
- This is likely to be just a number prefixed by a letter to indicate whether it is an input or output.
- Mitsubishi

24 inputs $X 400-X 427$ in octal format

$$
x_{400,} x 401, x_{402}, x_{403}, x 404, x 405, x 406, x 07, x 410, \ldots .
$$

16 output Y 430 - Y 4 47

- Siemens

The digital Ilo is arranged into groubs of 9 bits, called a byte. A signal is identified by its bit number (0-7) and it, byte number (0-127)
$x \frac{x x}{t} \cdot x \longrightarrow$ bit number
I : input

0 : output
$E X:-$
I 0.1 input at bit 1 in byte 0
0 2.0 outpi at bit 0 in byte 2

Logic Functions (LAD)

1) $A N D \quad D=A B$

$$
\xrightarrow{\longrightarrow}
$$

$-\frac{B}{0}$

100
111

2) $O R \quad D=A+B$

A	$\frac{B}{0}$	0
0	0	0
0	1	1
1	0	1
1	1	1

3) $\operatorname{NOT} \quad D=A^{\prime}$

4) $\operatorname{NAND} \quad 0=(A B)^{\prime}=A^{\prime}+B^{\prime}$

A	B	O
0	0	1
0	1	1

5) $N O R \quad O=(A+B)^{\prime}=A^{\prime} B^{\prime}$
$\begin{array}{lll}A & \underline{B} & \underline{O} \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}$

$$
\left\lvert\, \begin{array}{ccc}
A & B & O \\
-H & - & ()^{-}
\end{array}\right.
$$

6) $X O R \quad O=A B^{\prime}+A^{\prime} B$

Logic Function, (FBD)

IL programming
$\frac{\text { Mitsubishi }}{L D} \quad$ siemens

Logic Function, (IL)

1) $O R$

$\angle 0 \times 400$
A I 0.0
OR X $\times 401$
O IO. 1
OUT Y 430

$$
=\text { Q } 1.0
$$

Logic Function, (IL)

1) $O R$

$\angle 0 \times 400$
A I 0.0
OR X 401
OI OM
OUT Y 430

$$
=\text { Q } 1.0
$$

2) $A N D$

$$
\begin{array}{cc}
x 400 x 401 Y 430 & \text { I0.1 I0.2 Q1.0 } \\
-1 \vdash 1-()-1 & 1-1-1-
\end{array}
$$

LD $\times 400$
A Ip. 1
AND \times Yol
A I O. 2
OUT Yu30

$$
=Q 1.0
$$

3) $N O R \quad O=(A+B)^{\prime}=A^{\prime} 13^{\prime}$

LDI XYOO
ANI XYol
OUT Y430

AN I 0.1
AN I 0.2
$=Q_{2.0}$
2) $X O R \quad D=A B^{1}+A^{1} B$

$x 400 \quad x u 01$

ANI XYol
LDI XY00
AND XYOI
DRB
OUT Y430

LD $\times 400$

$$
\begin{array}{r}
A(\\
A I O .1 \\
A N I 0.2 \\
O C A N I 0.1 \\
A I 0.2 \\
) \\
=Q 1.1
\end{array}
$$

Internal Relay

Addresses :-
Mitsubishi MIDD, M|O1, M10 2,...
siemens $F 0.0, F 0.1, F 0.2, \ldots$

EX

$L D \times Y O 0$ OR XYOI AND XYOZ OUT MIOD LD M100
AND $\times 403$ OUT YY30

Set and Reset
(set) input \square (reset) input
 output

Mitsubishi

LD X400
S Y 430
$\operatorname{LD} \stackrel{\vdots}{\sim} \times 01$

Timers

Type of timers

1) ON-delay timer
2) OFF -delay timer
3) pulse timer
input \square input \qquad
\square
output

output

Timers

Type of timers

1) ON-delay timer
2) OFF -delay timer
3) pulse timer
input \square input \qquad
\square
output

output

Timers
on delay timer off delay timer pulse timer
 ON. delay timer PT: preset time

Mitsubishi:
PT $=n *$ time base of PLC
$\downarrow 10 \mathrm{~ms}$
is real integer 100 ms
1 sec
10 ser
100 sea
siemens
$K T x \times x \cdot x$
$\bigcirc 00 \circ \rightarrow 10 \mathrm{ma}$

$\vdots \quad 3 \rightarrow 1$ sec
999
KT SW
$K 5 \Rightarrow P T=5 \mathrm{lec}$ lime base $=1$ fir $P T=5 * 100 \mathrm{msec}=500 \mathrm{~ms}$
$K_{4} \Rightarrow P T=4$ ike hims base $=1 \mathrm{sec} \quad K T=7.2$

$$
P T=7 \times 1 \mathrm{sec}=7 \mathrm{rec}
$$

Addresses
Mitsubishi: T $450, T 451, \ldots$
Siemens: TO, T1, T2, ...
(1) DN-delay fimer

Mitsubishi

$\angle D \times 400$
OUT T 45° K 5
LDT450
OUTYY30

IO. 0 \square
\square
\qquad
$\varphi 2.0$

Siemens

AI 0.0
SRTO
LKT 5-2
A To

$$
=Q 2.0
$$

(3) OFF delay fimer

LD X400 OR Y430
ANI TY5I
OUT TYSI K 4
LO X40。 OR Y430 AN工T451 OUT Yy30
timer $<\cos ^{\text {cost }}$ cont.

EX:- DN/OFF cycle

LD $\times 400$
ANE TY5I
OVT TU50
K Y
LDT450
OUT T451
K 4
LD T 450
OUT Y430

EX:- Y $\rightarrow \Delta$ starter of induction motor

$$
\begin{array}{ll}
I_{Y}=\frac{\text { phase voltage }}{R} & V+\begin{array}{c}
I_{y} R \\
-M \\
-M
\end{array} \\
I_{Y}=\frac{V / \sqrt{3}}{R} & -M
\end{array}
$$

$$
\begin{aligned}
& I_{\Delta}= \frac{V}{R} \\
& \frac{I_{Y}}{I_{\Delta}}=\frac{1}{\sqrt{3}} \Rightarrow I_{Y}=\frac{1}{\sqrt{3}} I_{\Delta} \\
& T_{\Delta \rho_{\gamma}}=\frac{1}{3} T_{\mathrm{se}}
\end{aligned}
$$

$a m a^{\prime}$
$c^{b} m m c^{\prime}$
$c^{\prime} a^{\prime} a^{\prime}$
$c^{c} m c^{\prime}$
c^{\prime}

Counters
Up-counter \rightarrow Curt from zero up to the preset value
Down -Counter \rightarrow Count from preset value to err

Activated when set court is reached after courting from ter

Addresses
Mitsubish: $(460,(46), \ldots$
Siemens $\quad C_{0},<1, C_{2}, \ldots$

Mitsubishi

$$
\begin{aligned}
& \text { LD } \times 400 \\
& \text { RST } C 460 \\
& \text { LD } \times 401 \\
& C U C 460 \\
& K 10 \\
& C D C 460 \\
& \text { OUTY430 }
\end{aligned}
$$

Siemens

$$
\begin{aligned}
& A I O . O \\
& C U C O \\
& A I 0.1 \\
& S \subset O \\
& \angle K C 10 \\
& A I O .2 \\
& R C O \\
& A C O \\
& =Q 1.0
\end{aligned}
$$

EX:- Design a counter that count, the car, entering a park or leaving it, and gives a message il the park is full.

$$
\begin{aligned}
& A I 0.0 \\
& C U C 0 \\
& A I 0.1 \\
& C D C 0 \\
& A I O .2 \\
& S C O \\
& L K C S 0 \\
& A I 0.3 \\
& R C O \\
& A C D \\
& =Q 2.0
\end{aligned}
$$

1. Devise a ladder program to switch on a signal lamp if a pump is running and the pressure is satisfactory, or if the lamp test switch is closed.

2. Consider a valve which is to be operated to lift a load when a pump is running and either the lift switch is operated or a switch operated indicating that the load has not already been lifted and is at the bottom of its lift channel.

3. This problem is essentially part of the domestic washing-machine program. Devise a ladder program to switch on a pump for 100 s . It is then to be switched off and a heater switched on for 50 s . Then the heater is to be switched off and another pump is to be used to empty the water.

4. Write a ladder program that will switch on two motors when the start switch is operated, then switch off one motor after 200 s and the other motor after a further 100 s . When both motors have been switched off, a third motor is to be switched on for 50 s . The cycle is then to repeat itself unless a stop switch has been activated.

5. Write a ladder program to switch on a motor when the start switch is momentarily activated, with the motor remaining on for 50 s . At the end of that time a second motor is to be switched on for a further 50 s . A third motor is to be switched on 10 s before the second motor switches off and is to remain on for 50 s . The cycle is then to repeat itself unless a stop switch has been activated.

Timers 2 and 3 are set running when timer 1 goes on. Motor 2 is switched on until timer 1 goes on. Timer 2 is set for 50 s . Timer 3 is set for 40 s

Motor 3 is switched on when timer 3 goes on and off when timer 4 goes on. Timer 4 is set for 50 s
6. Write a FBD and ladder programs for drinks machine that allows the selection of tea or coffee, milk or no milk, sugar or no sugar, and will supply the required hot drink on the insertion of a coin.

This output causes tea powder to be put into the cup

This output causes coffee powder to be put into the cup

This output causes sugar to be put into the cup

This output causes milk to be put into the cup

This output cause hot water to enter the cup when tea or coffee has been selected and a coin inserted into the machine
7. Consider the problem of the control of a machine which is required to direct 6 tins along one path for packaging in a box and then 12 tins along another path for packaging in another box. A deflector plate might be controlled by a photocell sensor which gives an output every time a tin passes it. Thus the number of pulses from the sensor has to be counted and used to control the deflector.

